JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

M.Tech I Semester Examinations, March/April-2011

FINITE ELEMENT ANALYSIS
(CAD/CAM)
Time: 3hours
Max. Marks: 60

Answer any five questions

All questions carry equal marks

1. a. Explain the procedure for Finite Element Analysis starting from a given differential equation
b. Write the Weighted Residual statement and construct the weak form for the following differential equation.

$$
\begin{array}{r}
A E \frac{d^{2} u}{d x^{2}}+a x=0 \\
u(0)=0
\end{array}
$$

subjected to

$$
\begin{equation*}
A E \frac{d^{2} u}{d x^{2}}(L)=0 \tag{6+6}
\end{equation*}
$$

2. a. Derive the constitutive relation matrices for plane stress and plane strain situations.
b. Derive the strain-displacement relationship for 2-D situation.
3. a. Derive the interpolation functions at all nodes for the nine -node quadrilateral element shown in the fig.1.

Fig. 1
b. Derive the stiffness matrix for plane truss element.
4. a. Distinguish between essential and natural boundary conditions in FEM.
b. Find the displacements and the member end forces for the beam with $E I=4 \times 10^{6} \mathrm{~N}-\mathrm{m}^{2}$ shown in fig. 2.

Fig. 2
5. a. Find the shape functions of a brick element in terms of natural coordinates.
b. For the quadratic, isoprametric triangular element shown in fig. 3 map the point $\xi=0.5$ and η $=0.25$ on the parent element to the corresponding point on the distorted element.

Fig. 3
6. Formulate the finite element equations for triangular torsion element shown in fig. 4

7. a. Distinguish between consistent mass matrix and lumped mass matrices.
b. Consider the eigen value problem where

$$
[K]=\left[\begin{array}{ccc}
4 & -2 & 0 \\
-2 & 6 & -1 \\
0 & -1 & 3
\end{array}\right] ; \quad[M]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Compute the eigen values and eigen vectors.
8. Describe steps of tangent stiffness solution algorithm in which each load increment causes a single additional sampling point to be brought to the initiation of yielding. Assume that load increases monotonically and that the material is elastic-perfectly plastic.

